Problem 1.39

Show that any equation of the form (1.8.9) can be transformed to Sturm-Liouville form (1.8.10).

Solution

The goal here is to show that the second-order eigenvalue problem,

$$
\begin{equation*}
a(x) y^{\prime \prime}(x)+b(x) y^{\prime}(x)+c(x) y(x)+d(x) E y(x)=0 \tag{1}
\end{equation*}
$$

can be transformed to Sturm-Liouville form,

$$
\frac{d}{d x}\left[p(x) \frac{d y}{d x}\right]+[q(x)+E r(x)] y=0
$$

by choosing $p(x), q(x)$, and $r(x)$ appropriately. Start by dividing both sides of equation (1) by $a(x)$, which we assume is not zero.

$$
y^{\prime \prime}(x)+\frac{b(x)}{a(x)} y^{\prime}(x)+\frac{c(x)}{a(x)} y(x)+\frac{d(x)}{a(x)} E y(x)=0
$$

Multiply both sides by the integrating factor I.

$$
I=e^{\int^{x} \frac{b(s)}{a(s)} d s}
$$

We get the following ODE.

$$
e^{\int^{x} \frac{b(s)}{a(s)} d s} y^{\prime \prime}(x)+\frac{b(x)}{a(x)} e^{\int^{x} \frac{b(s)}{a(s)} d s} y^{\prime}(x)+\frac{c(x)}{a(x)} e^{\int^{x} \frac{b(s)}{a(s)} d s} y(x)+\frac{d(x)}{a(x)} e^{\int^{x} \frac{b(s)}{a(s)} d s} E y(x)=0
$$

The first two terms on the left can now be written as $d / d x\left(I y^{\prime}\right)$ as a result of the product rule. Factor $y(x)$ from the last two terms.

$$
\frac{d}{d x}\left[e^{\int^{x} \frac{b(s)}{a(s)} d s} y^{\prime}(x)\right]+\left[\frac{c(x)}{a(x)} e^{\int^{x} \frac{b(s)}{a(s)} d s}+\frac{d(x)}{a(x)} e^{\int^{x} \frac{b(s)}{a(s)} d s} E\right] y(x)=0
$$

Therefore, by choosing

$$
\begin{aligned}
& p(x)=e^{\int^{x} \frac{b(s)}{a(s)} d s} \\
& q(x)=\frac{c(x)}{a(x)} e^{x} \frac{b(s)}{a(s)} d s \\
& r(x)=\frac{d(x)}{a(x)} e^{\int^{x} \frac{b(s)}{a(s)} d s}
\end{aligned}
$$

equation (1) can be transformed to Sturm-Liouville form.

