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Problem 1.39

Show that any equation of the form (1.8.9) can be transformed to Sturm-Liouville form (1.8.10).

Solution

The goal here is to show that the second-order eigenvalue problem,
a(z)y"(z) + b(z)y'(z) + c(z)y(x) + d(z) Ey(z) =0, (1)
can be transformed to Sturm-Liouville form,
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by choosing p(z), q(z), and r(z) appropriately. Start by dividing both sides of equation (1) by
a(x), which we assume is not zero.

We get the following ODE.
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The first two terms on the left can now be written as d/dx(Iy’) as a result of the product rule.
Factor y(z) from the last two terms.
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Therefore, by choosing
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equation (1) can be transformed to Sturm-Liouville form.
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